Calculating Resistive Force on a Kayaker

A kayaker paddles with a power output of 46.0 W to maintain a steady speed of 1.50 m/s.

(a) Calculate the resistive force exerted by the water on the kayak.

Question:

What is the resistive force exerted by the water on the kayak?

Final answer:

The resistive force exerted by the water on the kayak is calculated using the power output and the steady speed, resulting in a force of 30.7 newtons.

Explanation:

To calculate the resistive force exerted by the water on the kayak, we can use the formula for power, which is the work done per unit time. The formula for power (P) when a constant force (F) is applied to an object that moves at constant speed (v) is:

P = F × v

Given that the kayaker paddles with a power output of 46.0 W to maintain a steady speed of 1.50 m/s, we can rearrange the formula to solve for the resistive force (F):

F = P / v

Plugging in the given values, we get:

F = 46.0 W / 1.50 m/s

F = 30.7 N

Therefore, the resistive force of the water on the kayak is 30.7 N.

← How does a 5 inch newtonian reflector compare to a 5 inch prime focus reflector Long jumper analysis how far can they move horizontally →